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LETTER TO THE EDPITOR

Lax equation, Lie algebra automorphism and nonlinear
supersymmetric dynamical systems

A Roy Chowdhury and I Mukhopadhyay

High Energy Physics Division, Physics Department, Jadavpur University, Calcutta 700032,
India

Received 21 June 1993, in final form 14 Jannary 1994

Abstract. Following an idea of Bogoyavlensky it is shown that a nonlinear supers;;mmeuic
integrable systermn can be constructed by using the autornorphisms of supersymmetric Lie algebra,

Enlarging the class of integrable systems is one of the most important problems in the theory
of nonlinear system [1]. Already there exists several concrete methods for the construction
and solution of various types of nonlinear system [2]. Also, supersymmetric integrable
systems have been studied by Mathieu [3], Kupershmidt [4], Manin [5] and others. AH
these analyses deal with the super generalizations of the usual integrable systems such as
KP, KDV, sine-Gordon, etc. On the other hand supersymmetric dynamical systems (that is
nonlinear systems without any space variation) have not received as much attention. Of Jate,
an important idea was put forward by Bogoyavlensky [6], who showed that automorphism
of Lie algebra [7] can be judiciously used to generate integrable systems of Toda lattice type.
In this letter we show that by using supersymmetric Lie algebra and its usual automorphism
it is possible to construct new integrable supersymmetric hierarchies. In the following we
start with a short derivation of the basic result due to Bogoyavlensky and then utilize it in
the case of supersymmetric Lie algebra. '
Let us start from the equation [6]

L=Lt) - ML (1)
where 7 is an automorphism obeying the following conditions

oM + N) = (M) + (V)

T(MN) = t(M)r(N) @
the order of the automorphism being N, i.e.,

=1 3)
Let us define

Ly = Le(LYt*(L)... T 3Lz - (L). 4)
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Now we find (z%(L)) given by

(r*(L)) = P (Lz(M) — ML)
= t*(Lt(M)) — (ML)
= t*L¥T (M) — t*MT* L
= LM — TR, )

This allows us to determine Ly as follows

N—1 N—1 N-1
Ly =L]] @ +Le@) [ 5@ + Le@y= @) [ [ * @) + -
k=1 k=2 k=3

+ L(LYT2(L) ... eV 2Ly WD)

N-1
= (Lt(M) — ML) [ | *(0) + La@)v*(M) — w(M)z(L))
k=1
(N=1) N=1
x ] @+ Le@E@yPon - 2en@n [ ] @+
k=2 . k=3

+ Lo ALY ... VD@ (M) = LG0Ty
N=2
= —MLy-+ Z LI(L) . Tk(L)'C'H-I(M)TJH-] (L) . t,N...](L)
k=0

N-1 i
=Y Lz(@)... L) . YL + Lae¥ ()
k=1

=> Ly = Lyv"(M)— MLy
with the second and third terms cancelling out each other
= Ly=LyM—MLy
since tV(M) =M I
= Ly = [Ly, M]. 6)
This is the form of Lax equation involving an automorphism of L itself which we will use
in our subsequent analysis.
If the automorphism is of order two, i.e. ¢Z = 1, then the Lax equation (6) reduces to
Ly =[L2, M] | - ™
where

L, = Lz(L). €]

Equaticns (7) and (8) will be used, in particular, to derive our results.
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The graded algebra OSP(1,2) has three even (bosonic) generators, H, Ju generating
an SI(2) subalgebra, and two odd (fermionic) generators V. with the following
commutation/anticommutation relations.

[H, W =40y . [N, J]1=2H
[H, Vel =Fiv [Je, V5] = Vs [, V&1 =0 €))
{Vie, Vil = 40 Vi, Vo) = —3H.

All finite dimensional representations of OSP(1,2) are completely reducible. The

irreducible ones p; are parametrized by an integer or half integer jeN /2, and have dimension
(45 +1). The fundamental representation has j = % The generators can be represented as

H = {(en —es3) Jr=e3 I-=ex
T (10)
Vi = {(e12 + ex) Vo =3(-en +em)

where ¢;; is a 3 x 3 matrix having 1 at the position of the ith row and jth column and zero
everywhere else.
The OSP(1, 2) algebra admits the following decomposition
a=at@a” (11)
where &t stands for the bosonic (even) part and &~ stands for the fermionic (odd) part of
the algebra.
This means we can write
0:'+ = {H: J—i—1 J—} and o = {V'h V—} (12)
with the following properties holding
L
et at]cat e, lca™ fe~, 0"} Ca™ (13)

as may be readily checked from the communication relations (13). The above discussions
shows that the algebra ¢ admits an involutive automorphism t,

Tia—>a (14)
where

*=id Tx+y) =1 +7() @y cMI=z(x,y]} (15)
where

X yeEw
and the action of 7 given by

L7
r(a¥) = 2o, , (16)
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The Lax pair L, M can be constructed from the algebra OSP(1,2) following the standard
procedure. We write

L= l)\-H+g+J+ +q_J_+r+V+ +.?'_V_
M=AH+AJ +A J. +B,V,+B_V_

where A is the spectral parameterfeigenvalue, g.., vy are the nonlinear fields with the ¢’s
bosonic and the r’s fermionic, consistent with the supersymmetry requirements of the graded
algebra under consideration.

In the same way, A4 are the bosonic and B.. the fermionic functions. The prescription
{16) now allows us to write

(L) =AH gyt g J —r Ve —r V.. (18)

These structures will be used in the following sections to derive nonlinear differential
equations. From equation (8) we observe that L, is quadratic in the generators of the
Lie algebra. To simplify such an expression we need the explicit form of these in terms of
the basic matrices ¢;; as given in equation (10). Whence we obtain,

(17)

78 1 ik 1
Ly = (g+g-)en +{g-g+)enn— ("2" ry+4q4r —) 5(612*1' en)+ (Er =g +) "2“(632 —én)

— 1/4@rr_Yexn —en) — 1/4(r_r  Yess —em) (19)

where we have used the multiplication rule, e;;en = §jrei. Substituting now in equation (8),
we at once get B_ = By = 0 along with

I i, 1/ix 1 fiA
3 (E?‘-z- + (Q+r-)') =3 (Er' - Q-—T+) Ay - s ('5"‘-:_ +4+r-) Ap

1/, 1{ix 1/in
3 (*2—"— - (9—?‘+)') =3 (-2"?'- - Q-T-i-) Ag+ 2 (EM + f1+?'—) A_.
We then expand As, Ap as functions in the spectral parameter A. For simplicity we set,
Ar=AL+2AL +2%47  Ag= A} +rAj+ %43 (21)

The nnknown coefficients Aj,-’s are determined in stages, whence we obtain;

(20)

AQ(rary) =2(g_r_ry +qr-iy)

Aﬁ, =g+ Al =gq_

Aj = (4g49_)'" (22)
50 that finally the desired nonlinear equations turn out to be

Foo = Hgeqs ) r — 4q_gir-

o= —4qiq+r - 4(4—:—&2—)3/2’ -

G4r+ + 245 =0

g-ry+2g_fp =0. (23)
In all the above expressions the dot (-) over the functions denotes time derivative.

One of the anthors (IM) is grateful to CSIR, Government of India, for a Junior Research
Fellowship which made this work possible. ‘
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